Modeling Low-coherence Enhanced Backscattering (LEBS) Using Photon Random Walk Model of Light Scattering

نویسندگان

  • Hariharan Subramanian
  • Prabhakar Pradhan
  • Young L. Kim
  • Yang Liu
  • Vadim Backman
چکیده

Interference effects caused due to the coherent waves traveling in time reversed paths produces an enhanced backscattering (EBS) cone, which is known to be inversely proportional to the transport mean free path length (ls) of a scattering media. In biological media, ls (0.5-2mm) >> wavelength λ, results in an extremely small (~0.001) angular width of the EBS cone making the experimental observation of such narrow peaks to be difficult. Hence, we developed a low coherence enhanced backscattering (LEBS) technique by combining the EBS measurements with low spatial coherence illumination and low temporal coherence detection. Low spatial coherence behaves as a spatial filter preventing longer path lengths and collects photons undergoing low orders of scattering. The experimental angular width of these LEBS peaks (~0.3) are more than 100 times the width of the peak predicted by conventional diffusion theory. Here we present a photon random walk model of LEBS cones obtained using Monte Carlo simulation to further our understanding on the unprecedented broadening of the LEBS peaks. In general, the exit angles of the scattered photons are not considered while modeling the time reversed interference phenomenon in diffusion regime. We show that these photon exit angles are sensitive to the low orders of scattering, which plays a significant role in modeling LEBS peaks when the spatial coherence length of the light source is much smaller than ls. Our results show that the model is in good agreement with experimental data obtained at different low spatial coherence illumination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling low-coherence enhanced backscattering using Monte Carlo simulation.

Constructive interference between coherent waves traveling time-reversed paths in a random medium gives rise to the enhancement of light scattering observed in directions close to backscattering. This phenomenon is known as enhanced backscattering (EBS). According to diffusion theory, the angular width of an EBS cone is proportional to the ratio of the wavelength of light lambda to the transpor...

متن کامل

Penetration depth of low-coherence enhanced backscattered light in subdiffusion regime.

The mechanisms of photon propagation in random media in the diffusive multiple scattering regime have been previously studied using diffusion approximation. However, similar understanding in the low-order (subdiffusion) scattering regime is not complete due to difficulties in tracking photons that undergo very few scatterings events. Recent developments in low-coherence enhanced backscattering ...

متن کامل

Penetration depth of low-coherence enhanced backscattering photons in the sub-diffusion regime

The mechanisms of photon propagation in random media in the diffusive multiple scattering regime have been previously studied using diffusion approximation. However, similar understanding in the low-order (sub-diffusion) scattering regime is not complete due to difficulties in tracking photons that undergo very few scatterings events. Recent developments in low-coherence enhanced backscattering...

متن کامل

Enhancement factor in low-coherence enhanced backscattering and its applications for characterizing experimental skin carcinogenesis.

We experimentally study potential mechanisms by which the enhancement factor in low-coherence enhanced backscattering (LEBS) can probe subtle variations in radial intensity distribution in weakly scattering media. We use enhanced backscattering of light by implementing either (1) low spatial coherence illumination or (2) multiple spatially independent detections using a microlens array under sp...

متن کامل

A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.

Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about scattering phase function is preserved. Our group has shown the ability to measure the spatial backscattering impulse response function along with depth-selective optical properties in tissue ex-vivo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006